Mark schemes

1. (a) smooth line drawn within half grid square of points \checkmark
minimum between 32.6 and $32.8 \mathrm{~cm} \checkmark$
(b) value of their minimum (cm) \checkmark

Within a half grid square
(c) doubles 0.2 OR calculates percentage uncertainty for 0.2 (half range) \checkmark Correct answer earns both marks
0.8 (\%) \checkmark CAO
(d) recognises that node-to-node spacing $=\lambda / 2 \checkmark$
recognises the need to divide by $8 \checkmark$
$2.36 \times 10^{9}(\mathrm{~Hz}) \checkmark$
Condone use of 7 or 9
3 sf required
For example:
$\lambda=\frac{0.509 \times 2}{8}$ or $0.127(25) \mathrm{m}$ seen; top line earns,$\sqrt{ }$ and bottom line earns ${ }_{2} \sqrt{ }$
$f\left(=\frac{3 \times 10^{8} \times 8}{0.509 \times 2}\right)=2.36 \times 10^{9}(\mathrm{~Hz})$ earns all 3 marks
$f\left(=\frac{3 \times 10^{8} \times 7}{0.509 \times 2}\right)=2.06 \times 10^{9}$ earns 2 marks
$f\left(=\frac{3 \times 10^{8} \times 9}{0.509 \times 2}\right)=2.65 \times 10^{9}$ earns 2 marks
Allow 2 marks for 4.72×10^{9} (must be 3 sf)
(e) (microwaves are) polarised \checkmark
2. B above MN by 0.20 m
$3 .{ }^{B}$
third
4. (a) Rotate aerial in vertical plane \checkmark

When aerial vertical signal is a maximum
When aerial horizontal signal is a minimum \checkmark
Max occurs when aerial aligned with plane of polarisation of microwave \checkmark
The first mark is for what needs to be done
The second mark is for what is measured
The third mark is for the link to polarisation
(b) Received signal goes through series of max and min \checkmark

Reflected and direct microwaves interfere \checkmark
Path length of reflected wave/path difference increases as plate moved \checkmark
Phase difference between reflected and direct waves changes (so signal strength changes.) \checkmark

First mark is for what is observed
Accept 'both' for 'reflected and direct'
If no other mark given, 1 mark can be awarded for mention of interference/ superposition/ out of phase
(c) Equation only valid if slit-screen distance is a lot greater than slit separation \checkmark Allow arguments in terms of angles
Allow 0.45 m for slit-screen distance
Allow use of standard symbols
(d) Maximum path length for first slit
$=\sqrt{ }\left(0.45^{2}+(0.25-0.06)^{2}\right)$
$=0.49 \mathrm{~m} \boldsymbol{V}_{1}$
MP1 is for one path length correct
MP2 is for both path lengths correct
Max path length for second slit
$=\sqrt{ }\left(0.45^{2}+(0.25+0.06)^{2}\right)$
$=0.55 \mathrm{~m} \mathrm{~V}_{2}$
MP3 is for determination of path difference and conclusion.
Path difference $=0.55-0.49=0.06 \mathrm{~m}$
Which is greater than half a wavelength - so yes $\sqrt{3}_{3}$
Alternative for MAX2
Young equation used to determine fringe separation. \checkmark_{12}
Idea that fringe separation $<0.25 \mathrm{~m}$ so wavelength can be determined. $\sqrt{3}$
5. D

The frequency is 0.17 Hz .
6. A

$$
\boldsymbol{P} \text { is in antiphase with } \boldsymbol{R} \quad \boldsymbol{P} \text { has the same amplitude as } \boldsymbol{Q}
$$

7. (a) Max 2

Antiphase / completely out of phase / π radian out of phase \checkmark
Allow $1 / 2$ cycle or 180° out of phase
Condone:
'Move in opposite directions'
'Displaced in opposite directions'
'when P is at its peak then Q is at its trough'
for loose descriptions of antiphase
'Opposite amplitudes' too vague (treat as neutral)
'When P is positive Q is negative' too vague
Similar amplitudes (of vibration) or similar (magnitudes of) displacement (at any instant in time) \checkmark

Same period or same frequency \checkmark
Move with the same speed \checkmark
Allow same amplitude / same (magnitude of) displacement
(b) Use of $v=f \lambda$ or determines the wavelength $=0.275 \mathrm{~m} \checkmark$

Condone use of wavelength $=0.55 \mathrm{~m}$ or
0.1375 m in substitution for $1^{\text {st }} \mathrm{MP}$

Condone Power of ten errors on wavelength for $1^{\text {st }} \mathrm{MP}$
Two errors forfeit $1^{\text {st }}$ mark:
Allow wavelength in range 0.27 to 0.28 m
$(v=) 69 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
Allow answers in range 67.5 to $70.0 \mathrm{~m} \mathrm{~s}^{-1}$
(c) Same speed $\sqrt{ }$

Moving in opposite directions \checkmark
same wavelength / same frequency/ similar amplitudes \checkmark
The following are insufficient:
Progressive / transverse / transfer energy
Allow same amplitudes
(d) Horizontal line drawn from \mathbf{P} to $\mathbf{Q} \mathbf{\checkmark}$
(e) Marks an A at each end of the string \checkmark

Condone other incorrect antinodes or nodes drawn ($1^{\text {st }} \mathrm{MP}$)
Marks all 5 As (evenly spaced by eye) on a horizontal line \checkmark cao

Penalise incorrect number A or poorly positioned A (2nd $M P$)

(f) Third harmonic / third harmonic drawn in Figure $6 \checkmark$

Frequency for first harmonic has reduced to $1 / 3$ of previous or
$\mathrm{f}=\frac{1}{3} \times \frac{1}{2 L} \sqrt{\frac{T}{\mu}}$
or
speed reduces to $1 / 3$ of previous \checkmark
String being driven at three times this frequency \checkmark
Must be a clear statement that this is $3^{r d}$ harmonic / accept 3 symmetrical loops drawn in Figure 6
Where no other mark has been scored allow 1 mark for:

- Speed decreases
- Fundamental frequency is lower/ frequency of $1^{\text {st }}$ harmonic is lower
- use of
$\mathrm{f}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}$
where 9μ has been substituted correctly (accept in any correct rearrangement)
$8 . \mathrm{D}$
9 . A

10.

(a) Refers to relative direction of oscillations to that of the direction of propagation / transfer of energy \checkmark

For transverse waves oscillations are at right angles to direction of propagation while in longitudinal waves they are in the same direction \checkmark
allow direction the wave is travelling in
(b) Correct value for $\mu=(1 \times) \frac{\pi d^{2}}{4} \rho=7.5 \times 10^{-4}\left(\mathrm{~kg} \mathrm{~m}^{-1}\right) \checkmark$
$\left(\right.$ uses $\left.f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}\right) \checkmark$

Tension $=126 \mathrm{~N}$ (allow $9.7 \times 10^{5} \times$ their value for μ) \checkmark
(c) Max tension permissible before breaking $=3.0 \times 10^{9} \times$

$$
\frac{\pi \times\left(3.5 \times 10^{-4}\right)^{2}}{4}=288(289)(290) \mathrm{N} \checkmark
$$

This is greater than required tension so wire is suitable. \checkmark
OR
stress in operation $=\frac{126 \times 4}{\pi \times\left(3.5 \times 10^{-4}\right)^{2}}=1.3 \times 10^{9}\left(\mathrm{~N} \mathrm{~m}^{-2}\right) \checkmark$
which is less than breaking stress \therefore safe to use $\sqrt{ }$
Allow ecf for incorrect area in 2.2
(d) Shows second harmonic $\lambda=\frac{1}{f} \sqrt{\frac{T}{\mu}} \checkmark$

Identify f and T are constant so λ is proportional to $\frac{1}{\sqrt{\mu}} \checkmark$
λ increases from A to $B \checkmark$
mass per unit length decreases from A to B so A has a greater diameter \checkmark
11. A
12. C
13. A
14. (a) $1.5(\mathrm{~ms}) \checkmark$
(b) $\quad A=4.2(\mathrm{~mm})$ read from graph \checkmark
$\mathrm{T}=2.0(\mathrm{~ms})$ read from graph \checkmark
$\left(\mathrm{a}_{\max }=4.2 \times 10^{-3} \times\left(2 \times \pi /\left(2 \times 10^{-3}\right)\right)^{2}\right.$
$4.1(5) \times 10^{4}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \checkmark$ (Do not allow 4.2)
Condone power of ten error in A and/or T but not in final answer.
Evidence for T might be seen in equation, as 500 (f).
Only allowed ecf for max 2 is use of 4.1 mm for A, giving 4.0×10^{4} ($\mathrm{m} \mathrm{s}^{-2}$)
(c) longitudinal
(they) oscillate along direction of energy transfer \checkmark Both required for 1 mark Condone "vibrate" for oscillate.
Condone 'travel' for transfer
15. D
16. B
17.

C

18. (a) f (from $\frac{1}{T}$) in range $61 \pm 1 \mathrm{~Hz}_{1} \sqrt{ }{ }_{2} \checkmark$

OR
$61 \pm 3 \mathrm{~Hz}{ }_{12}$ ل
maximum 1 mark for POT error OR incorrect rounding
no credit for 1 sf; treat 60 as 2 sf unless clearly rounded to 6×10^{1}
for ${ }_{1} \sqrt{ } \sqrt{ }$ require $\geq \mathbf{2} \boldsymbol{s f}$ that rounds to not less than 60 and not more than 62
for ${ }_{12} \sqrt{ }$ require $\geq \mathbf{2} \boldsymbol{s f}$ that rounds to not less than 58 but less than 60 OR for ${ }_{12} \sqrt{ }$ require $\geq \mathbf{2} \boldsymbol{s f}$ that rounds to more than 62 but not more than 64 if incorrect rounding leads to 60 treat this as 1 sf and give no credit use of $\frac{1}{T}$ does not have to be seen; marks are for final answer seen
(b) (figures) 804 and 226 seen in working ${ }_{1} \checkmark$
$\lambda=$ difference between their readings $\times 2$;
given to nearest mm; expect 1.156 (m)
OR
to nearest cm; expect $1.16(\mathrm{~m})_{2} \sqrt{ }$
for ${ }_{1} \sqrt{ } 578$ is not enough
for ${ }_{2} \sqrt{ }$ range is based on $x=(804-226=) 578 \pm 2 \mathrm{~mm}$;
give no credit for POT errors eg 115.6 / 116 etc accept 1156 mm etc if unit on answer line is amended
(c) c correctly evaluated to ≥ 2 sf from their $f \times$ their $\lambda \checkmark$
substituted data may be from 03.1/2 final answers or unrounded (intermediate) data from working
expected answer $=61 \times 0.578 \times 2=70.5 \mathrm{~m} \mathrm{~s}-1$
(d) μ correct to 2 sf based on their f and their λ earns both marks ${ }_{1} \sqrt{2} \checkmark$
for incorrect / missing μ

EITHER

use of $c=\sqrt{\frac{T}{\mu}}$
OR
use of $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
for ${ }_{1} \checkmark$ their value of μ can be given to ≥ 2 sf but must agree with $\frac{0.5 \times g}{(\text { their } f \times \lambda)^{2}}$ OR $\frac{0.5 \times g}{(\text { their } c)^{2}}$ when rounded to 2
sf; use of $g=9.81$ or 9.8 only; no ecf for mixed units
expected answer $\mu=9.9 \times 10^{-4}\left(\mathrm{~kg} \mathrm{~m}^{-1}\right)$: be wary of which approach has been taken by the candidate
for ${ }_{12} \sqrt{ }$ 'use of' means allow either
rearranges so that μ is the subject eg $\mu=\frac{T}{c^{2}}$
(accept $\mu=\frac{m g}{c^{2}}, \frac{T}{c^{2}}=\mu$ etc) or
substitution of all relevant data including their c into a correct expression with μ as the only unknown
for T allow 4.9 / $4.91 / 4.905$ (accept 0.5×9.81 or 0.5×9.8); allow mixed units; allow 0.5 g
OR 'use of' means allow either
rearranges to $\mu=\frac{T}{(2 \times l \times f)^{2}}$ OR $\frac{T}{4 \times l^{2} \times f^{2}}$ or
substitution of all relevant data including their l and f leaving μ as the unknown; allow sub of λ for $2 l$ watch for possible error $\lambda=L$
(e) $0.71(\mathrm{~mm}) \checkmark$
only answer that gets mark
(f) ANY TWO FROM
repeat readings at different points along the rod and calculate an average / mean ${ }_{1} \checkmark$ repeat readings in different directions (perpendicular to the rod) and calculate an average / mean ${ }_{2} \sqrt{ }$
reject / discard anomalous readings before calculating an average / mean ${ }_{3} \checkmark$
award ${ }_{123} \sqrt{ }=1$ MAX for checking at different points / in different directions to confirm that the rod is uniform / that there are no anomalies
allow 'cylinder' / 'wire' etc for rod
for ${ }_{1} \sqrt{ } \sqrt{ }$ and ${ }_{3} \checkmark$ averaging idea only needs to be seen once;
if averaging idea missing then allow 'repeat at different points and in different directions, then remove anomalies' ${ }_{123} \checkmark=1$ MAX
if 'calculate' is not seen allow 'work out' //'determine'/ 'compute'; anything that sounds like a mathematical process is ok; 'find' / 'obtain' / 'take'/ 'do an average' are just ok;
'get' is not ok
for $\sqrt{ } \checkmark$ allow repeat at 'different positions' / 'down / along the rod'
for ${ }_{2} \sqrt{ }$ allow (repeat in different directions) 'around the rod'/
'different orientations'/ 'angles' / 'planes' / 'sides'
for ${ }_{3} \checkmark$ allow 'ignore anomalies';' 'outlier' = 'anomaly'
reject 'calculate an average to eliminate effect of anomalies'
treat as neutral: 'turn the wheel to close the callipers' / suggestions about calibration
treat as neutral: 'zero callipers before use' this is a procedure to eliminate a source of systematic error
(g) (for use of expected 0.71)
$\rho=8.9(41) \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
OR
(for use of 0.53)
$\rho=1.6(05) \times 10^{4}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
OR
$\rho=\frac{4.51 \times 10^{-3}}{(\text { their } d \text { from }(\mathrm{e}))^{2}}$
OR
attempts to use μ OR 3.5(4) $\times 10^{-3}$ divided by their (recognisable) cross-sectional area ${ }_{1} \checkmark$

AND/OR
evidence showing cross-sectional area $=\frac{\pi d^{2}}{4}$ using their d from (e) (allow πr^{2} using their d) ${ }_{2} \sqrt{ }$
correct answer scores ${ }_{123} \checkmark \checkmark \checkmark$
for ${ }_{123} \checkmark \checkmark \checkmark$ allow an answer that rounds to the correct 2 sf value sample results for expected d

d / mm	A / m^{2}	$\rho / \mathrm{kg} \mathrm{m}^{-3}$
0.71	3.96×10^{-7}	$8.9(41) \times 10^{3}$
0.53	2.21×10^{-7}	$1.6(05) \times 10^{4}$

for ${ }_{1} \sqrt{ }$ accept use of symbols, eg
$\rho=\frac{\mu}{A} /=\frac{3.54 \times 10^{-3}}{A(\times 1)} /=\frac{4 \times \mu}{\pi \times d^{2}} /=\frac{4 \times 3.54 \times 10^{-3}}{\pi \times d^{2}(\times 1)}$
$=\frac{3.54 \times 10^{-3}}{\pi \times r^{2}(\times 1)}$
for ${ }_{2} \sqrt{ }$ expect correct value of A seen or correct values of A or d in working, eg
$\rho=\frac{3.54 \times 10^{-3}}{3.96 \times 10^{-7}(\times 1)} /=\frac{4 \times 3.54 \times 10^{-3}}{\pi \times\left(0.71 \times 10^{-3}\right)^{2} \times(1)}$
accept values ≥ 2 sf for A; allow ecf d and don't penalise POT error in A ord (eg missing $10^{-7}, 10^{-3}$)
19. D
20. A
21. (a) Waves travel to the boundaries and are reflected \checkmark

Not bounce off ...
two waves travelling in opposite directions interfere/superpose \checkmark
Not superimpose or interferes with itself
1
Fixed boundaries (cannot move so) are nodes \checkmark
creates nodes and antinodes bland =0
In some positions the waves always cancel /interfere destructively to give zero amplitude/no vibration/nodes)
OR
interfere constructively to produce positions of maximum amplitude/maximum vibration/antinodes \checkmark
(b) Use of $f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}} \checkmark$

Either rearranges for μ without substitution or substitutes correctly in the formula
$4.2(4.19) \times 10^{-4}(\mathrm{~kg}) \checkmark$
(d) 1 rotation of the peg $=22 \mathrm{~mm} \checkmark$

Or Reads increase in tension produced by the extra extension (about 10 N) from graph and adds to 25
extra extension $=22 \times 75 / 360=4.6 \mathrm{~mm}$
(ecf for incorrect circumference) \checkmark
$\pi d \times 75 / 360$ not evaluated $=1$

Total extension $=11+4.6(15.6 \mathrm{~mm})$ so tension $35-36 \mathrm{~N} \checkmark$ Inspect their length and their tension in the substitution

Calculates frequency for their tension
T must be greater than the original 25 N
Condone adding or subtracting extra extension to 0.33 m
If $4.0 \times 10^{-4} \mathrm{~kg}$ used then answer will be in range 448 Hz to 455 Hz If 4.19×10^{-4} used 438 to 444 Hz
22. (a) Period $=0.2 \times 10^{-14}$ (s) read off

OR
Recognisable T substituted into $T=1 / f \checkmark$
An acceptable subject (period, time for one cycle, one cycle, T, etc.)
Allow non-standard symbol with unit seen on time.
Allow this subtraction of two times seen in $f=1 / T$
Use of $T=1 / f$ and $c=f \lambda \checkmark$
OR
Use of $\lambda=c T$
Use of here is:
Subject must be seen with substitutions or rearranged equations
with $f=1 / T$ and $\lambda=c / f$
Condone power 10 error here
Condone lack of subject in vertical working where rearranged equation with appropriate subject seen at heading of column
$6(.0) \times 10^{-7}(\mathrm{~m}) \checkmark$
Number must be expressed as 6×10^{-7} or 600×10^{-9} or equivalent not enough to see only nano prefix.
(b) (Determines a fraction of cycle)

$$
\begin{aligned}
& \frac{0.04}{0.2} \text { or } \frac{2}{10} \text { or } \frac{1}{5} \text { or } 0.2 \text { or } \frac{1.2\left(\times 10^{-7}\right)}{6\left(\times 10^{-7}\right)} \text { or } 0.2 \lambda \text { seen } \checkmark \\
& \text { Condone their fraction } \times 2 \pi \text { or their decimal } \times 2 \pi \\
& \text { For } 1^{\text {st }} \text { mark }
\end{aligned}
$$

$2 \pi / 5$ OR 0.4π
OR
1.26 or $1.3 \quad \checkmark$

Allow $8 \pi / 5$ OR 1.6π
OR
5.03 or 5.0
(c) $\quad($ Distance $=) 3 \times 10^{-7} \times 2.37 \times 10^{5}$ seen

OR
(Distance $=$) $0.07(11)(m)$ seen \checkmark
Subs into $s=\frac{1}{2} \mathrm{at}^{2} \checkmark$
Condone error in sub for s where formula has been otherwise correctly manipulated with a (or g) as subject
9.88 (3 sf only) \checkmark

Alternative:
$1^{\text {st }}$ mark average speed $=\frac{3 \times 10-7 \times 2.37 \times 105}{0.12}$
$2^{\text {nd }}$ mark $\quad a=\frac{2 \times \text { their average speed }}{0.12}$
$3^{\text {rd }}$ mark $\quad 9.88$
(d) Draws a tangent to the curve at approximately
$\mathrm{t}=120 \mathrm{~ms}$ and attempts a gradient calculation \checkmark
Tangent must be a straight line that touches curve and divergent from curve before 90 ms and after 150 ms
(Gradient =) 1.2 (range 1.1 to 1.3) \checkmark
Allow 1.2×10^{-3} (range 1.1×10^{-3} to 1.3×10^{-3}) \checkmark
Ignore units on answer line
$2^{\text {nd }}$ mark is dependent on $1^{\text {st }}$ mark
Max 1 mark for correct answer in range where tangent satisfies above conditions but doesn't quite touch curve (half-square tolerance)
First alternative:
$1^{\text {st }}$ mark
Use of $v=u+$ at with sub for $a=9.88$ or 9.875 and $t=0.12$
$2^{\text {nd }}$ mark
1.2 or 1.19 or 1.185 only

Second alternative:

$1^{\text {st }}$ mark
Use of $s=1 / 2 a t^{2}$ and $d s / d t=$ at with sub for $a=9.88$ or 9.875 and t
$=0.12$
$2^{\text {nd }}$ mark
1.2 or 1.19 or 1.185 only
(e) (instantaneous) Velocity (of the mirror) or (instantaneous) speed (of the mirror) \checkmark

Ignore any units quoted
Do not allow:
Average speed / constant speed
23.
24. A
25. B
26. (a) 180 degrees
accept ${ }^{\circ}$ for degrees
OR

```
\pi}\mathrm{ radians }
    condone c or 'rad' for radian
    reject 'half a cycle'
    treat ' }\pi\mathrm{ radians in phase' as talk out
```

(b) (idea that) sets of combining waves do not have the same amplitude \checkmark
condone 'waves do not have same intensity' or 'same energy' or 'some energy is absorbed on reflection' or 'same power' or 'same strength' or idea that non point source or non point receiver would lead to imperfect cancellation condone the idea that the waves may not be monochromatic ignore 'some waves travel further' or 'waves do not perfectly cancel out'
reject 'waves may not be 180° out of phase'
(c) valid use of a set square or protractor against TR (to ensure perpendicular) ${ }_{1} \checkmark$
measure x at two different points [at each end of M] and adjust until [make sure] both distances are the same $2 \checkmark$

OR
use of set square to align M with the perpendicular line earns ${ }_{2} \checkmark$
if method used does not allow continuous variation in x then award maximum 1 mark

OR
align graph paper with $\mathrm{TR}_{1} \checkmark$
align M with grid lines on graph paper ${ }_{2} \checkmark$
both marks can be earned for suitable sketch showing a viable procedure involving one or more recognisable set squares or protractors; the sketch may also show a recognisable ruler, eg

allow use of scale on set square to measure the perpendicular distances don't penalise incorrect reference to the set square, eg as 'triangular ruler', as long as the sketch shows a recognisable set square
(d) $\mathrm{G}_{\max }$ line ruled through bottom of $n=3$ error bar and through top of $n=11$ error bar $1 \checkmark$
$\mathrm{G}_{\text {min }}$ line ruled through top of $n=5$ error bar and through bottom of $n=13$ error bar ${ }_{2} \checkmark$
$\mathrm{G}_{\text {max }}$ and $\mathrm{G}_{\text {min }}$ calculated from valid y step divided by valid x step;
both n steps $\geq 6_{3} \checkmark$
allow 1 mm tolerance when judging intersection of gradient lines with error bars
ignore any unit given with $G_{\text {max }}$ or $G_{\text {min }}$; penalise power of ten error in 01.5

${ }_{12} \sqrt{ }=1$ MAX if (either) line is thicker than half a grid square or of variable width or not continuous;
expect $G_{\max }=3.2(1) \times 10^{-2}$ and $G_{\min }=2.5(2.49) \times 10^{-2}$
(e) $\lambda\left(\right.$ from $\frac{{ }^{G} \max ^{+G} \mathrm{~min}}{2}$)

AND
result in range 2.8(0) to $2.9(0) \times 10^{-2}(\mathrm{~m})_{1} \checkmark{ }_{2} \checkmark$
OR
award one mark for
$2.7(0)$ to $3.0(0) \times 10^{-2}(\mathrm{~m})_{12} \checkmark$
penalise 1 mark for a power of ten error
reject 1 sf 3×10^{-2} (m)
if a best fit line is drawn between the $G_{\max }$ and $G_{\text {min }}$ lines and the gradient of this is calculated award 1 mark for λ in range 2.8(0) to $3.0(0) \times 10^{-2}(\mathrm{~m})$
(f) uncertainty in $\lambda=\mathrm{G}_{\max }-\lambda$

OR
$\lambda-G_{\text {min }}$
OR
$\left(\frac{{ }^{G} \max ^{-G} \min }{2}\right), \checkmark$
percentage uncertainty $=($ uncertainty $/ \lambda) \times 100_{2} \checkmark$
result in range 11(.0) \% to 14(.0) \% $3_{3} \checkmark$
${ }_{1} \checkmark$ can be earned by showing a valid uncertainty then dividing by λ
ecf their $\lambda, G_{\max }$ and $G_{\text {min }}$ for ${ }_{1} \checkmark$ and ${ }_{2} \checkmark$
allow λ found from best fit line
accept $\left(\frac{{ }^{G} \max -\lambda}{\lambda}\right) \times 100$ or $\left(\frac{{ }^{G} \max -{ }^{G} \min }{{ }^{G} \max +{ }^{G} \min }\right) \times 100$ etc for ${ }_{12} \checkmark$
allow $\left(\frac{\Delta \lambda}{\lambda}\right) \times 100$ where $\Delta \lambda$ is any plausible uncertainty for ${ }_{2} \checkmark$ numerical answer without valid working can only earn ${ }_{3} \checkmark$
(g) (states) calculate the (vertical) intercept ${ }_{1} \checkmark$

OR
outlines a valid calculation method to calculate $y_{1} \checkmark$
determine the intercept for both lines and calculate average value ${ }_{2}$
\checkmark
OR
determine the (vertical) intercept of the line of best fit (between
$G_{\text {max }}$ and $\left.G_{\text {min }}\right)_{2} \checkmark$
draw the line of best fit (between $G_{\max }$ and $G_{\text {min }}$); perform calculation to find intercept earns ${ }_{12} \checkmark$
(h)

result	reduced	not affected	increased
$G_{\max }$		\checkmark	
$G_{\min }$	\checkmark		
λ	\checkmark		
y			\checkmark

general marker question
allow any distinguishing mark as long as only one per row
for \checkmark and X in same row ignore X
for \checkmark and \checkmark in same row give no mark
ignore any crossed-out response
alternative approach: single best fit line drawn on Figure 4
(d) G calculated from y step divided by x step;
n step $\geq 6{ }_{3} \checkmark$
(e) λ in range $2.8(0)$ to $2.9(0) \times 10_{-2} \checkmark$
(f) percentage uncertainty in $\lambda=\left(\frac{\Delta \lambda}{\lambda}\right) \times 100$

AND
result in range $11(.0) \%$ to $14(.0) \% \checkmark$
MAX 1
(g) calculate intercept

OR
outlines a valid calculation method to find $y \checkmark$
(h) as main scheme no ecf possible
alternative approach: non-crossing lines for $G_{\max }$ and $G_{\min }$ on Figure 4:
includes lines that meet but do not cross
(d) $\quad \mathrm{G}_{\max }$ and $\mathrm{G}_{\min }$ calculated from y step divided by x step; both n steps

$$
\geq 6_{3} \checkmark
$$

MAX 1
(e) to (h) as main scheme
27. (a) waves are reflected (from the oven wall) \checkmark
and superpose/interfere with wave travelling in opposite direction/incident waves/transmitted wave \checkmark

NOT superimpose
(b) energy/amplitude is maximum \checkmark
(chocolate melts at) antinode \checkmark
if refer to node can still be awarded first mark
(c) clear evidence that used first and third antinode \checkmark
can be from diagram
distance from first to third antinodes $=0.118 \pm 0.001$ (m) OR
distance between two adjacent antinodes $=0.059 \pm 0.001(\mathrm{~m}) \checkmark$ mark for either value
carry their value forward for subsequent marks even if outside tolerance
wavelength $=0.118(\mathrm{~m}) \checkmark$
mark for using their wavelength (range 0.112 to 0.124)
frequency $=3.0 \times 10^{8} / 0.118 \checkmark$
mark for use of $v=f \lambda$ allow this mark if use 0.059
frequency $=2.5 \times 10^{9}(\mathrm{~Hz}) \checkmark$
must be in range $2.40 \times 10^{9}-2.60 \times 10^{9}$
if use 330 for speed lose last 2 marks
(d) position of antinode/maximum energy/maximum amplitude/nodes (in food) continually changes \checkmark must be clear antinode maximum energy/maximum amplitude changes location
30. (a) A wave transfers energy from one point to another \checkmark
without transferring material / (causing permanent dis without transferring material / (causing permanent displacement of the medium) \checkmark owtte
(b) (i) $0.6(\mathrm{~mm})$ or $0.60(\mathrm{~mm}) \checkmark$
(ii) $0.080(\mathrm{~m}) \checkmark$

Allow 1 sig fig
(iii) $\quad f=1 / T=1 / 0.044=23(\mathrm{~Hz}) \checkmark(22.7 \mathrm{~Hz})$
(iv) $\quad v=\mathrm{f} \lambda=22.7 \times 0.080=1.8\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \checkmark\left(1.82 \mathrm{~m} \mathrm{~s}^{-1}\right)$
allow CE $v=$ (biii) \times (bii) but working must be shown
1 sig fig not acceptable
(c)

sound waves are transverse	sound waves are longitudinal	sound waves can interfere	sound waves can be polarised
	$\sqrt{ }$	$\sqrt{ }$	

(d) the wavelength would be smaller smaller spread in main peak or more peaks (between A and B) the central peak is higher (owtte) as the energy is concentrated over a smaller area (owtte) reference to $\left(\sin \theta_{\min }=\lambda / d\right)$

$\checkmark \checkmark \checkmark$ any 3 lines max 3

Note that the marks here are for use of knowledge rather than performing calculations.
No bod if writing does not make increase or decrease clearly distinct.
Marking should be lenient.

